Purpose

The purpose of this project is to determine if 5 weeks of ketogenic (KD, high-fat) diet vs. standard diet (SD) significantly improves motor and sensory function, glycemic function, and functional independence in patients with spinal cord injury.

Condition

Eligibility

Eligible Ages
Between 19 Years and 60 Years
Eligible Genders
All
Accepts Healthy Volunteers
No

Inclusion Criteria

  • Clinically motor complete and incomplete spinal cord injury, age 19-60 - ASIA A, B, C or D (ASIA: Neurological Impairment Scale)

Exclusion Criteria

  • Pregnant women. - Neurological (other than SCI), vascular and/or cardiac problems that may limit function and interfere with testing procedures - Patients with evidence of renal insufficiency and liver disease by history, physical examination, and laboratory tests - Patients with underlying pulmonary diseases

Study Design

Phase
N/A
Study Type
Interventional
Allocation
Randomized
Intervention Model
Parallel Assignment
Primary Purpose
Other
Masking
Single (Outcomes Assessor)

Arm Groups

ArmDescriptionAssigned Intervention
Experimental
Ketogenic Diet Group
Ketogenic diet is a high-fat, low-carbohydrate diet (lipid to carbohydrate + protein ratio of 3:1) that included ≈72% total energy as fat, ≈25% as protein, and ≈3% as carbohydrate during enteral feeding and ≈65% total energy as fat, ≈27% as protein, and ≈8% as carbohydrate and fiber during solid feeding. Patients will start receiving ketogenic diet within the 72 hours injury, after completing their baseline measurements.
  • Other: Ketogenic Diet
    Enteral feeding via nasogastric (NG) or nasojejunal (NJ) tubes with ketogenic diet will start within 72 hours of injury and solid feeding will start as soon as the patient is able to swallow. This diet is a high-fat, low-carbohydrate diet (lipid to carbohydrate + protein ratio of 3:1) that will include ≈75% total energy as fat, ≈20% as protein, and ≈5% as carbohydrate and fiber.
Other
Standard Diet Group
Patients will start to receive standard hospital diet within 72 hours of injury after completing their baseline measurements. Standard diet includes ≈35% total energy as fat, ≈27% as protein, and ≈44% as carbohydrate and fiber.
  • Other: Standard Diet
    Enteral feeding via nasogastric (NG) or nasojejunal (NJ) tubes with SD diet will start within 72 hours of injury and solid feeding will start as soon as the patient is able to swallow. This diet includes ≈35% total energy as fat, ≈27% as protein, and ≈44% as carbohydrate and fiber.

Recruiting Locations

More Details

Status
Recruiting
Sponsor
Ohio State University

Study Contact

Ceren Yarar-Fisher, PhD
205-977-0891
yarar-fisher.1@osu.edu

Detailed Description

There is an urgent need for innovative therapies for improving neurorecovery after spinal cord injury (SCI). Despite extensive research, clinical advancements, and improved rehabilitation strategies, SCI continues to be a significant cause of disability and mortality. After a primary impact, the injured spinal cord undergoes multiple secondary pathological states that represent an important target in developing neuroprotective strategies for treatment of SCI. Even minor improvements in neurological recovery can have profound impacts on management of daily activities, secondary health complications, and quality of life. Thus, timely and effective strategies are of critical importance for positive outcomes after SCI. A number of pharmacological neuroprotective agents have been subject to intensive investigation in large, multicenter, prospective randomized controlled trials. Despite promising preclinical animal data, the primary outcomes of these clinical trials were largely negative. There is thus clear reason for researchers, clinicians, and patients to seek alternative therapies to enhance neurorecovery and functional status after SCI. The scientific premise of this project rests upon accumulating evidence that diet-based therapies, such as the ketogenic diet (KD), offer effective neuroprotection against secondary injury cascades and improve forelimb motor function in a rat model of SCI and improve upper extremity motor function in patients with acute SCI. The KD is a high-fat, low-carbohydrate diet designed to mimic the metabolic and biochemical changes that occur during calorie restriction, specifically ketosis. Ketone bodies have been shown to exert neuroprotective effects by preventing oxidative damage; attenuating neuroinflammation and glutamate excitotoxicity; and inhibiting apoptosis in the brain and spinal cord. Because glutamate excitotoxicity, inflammation, and induction of apoptotic pathways lead to progressive degeneration in the spinal cord shortly after the injury, inhibition of these processes by ketone bodies may enhance neurological recovery after an SCI. In support of these hypotheses, we recently showed for the first time that, compared with a standard hospital diet (SD), 5 weeks of KD improved upper extremity motor function in patients with acute SCI. In addition, a neuroinflammatory blood protein, fibrinogen, was present at lower levels in the KD serum samples than in the SD serum samples. Taken together, our results suggest that a KD may induce anti-inflammatory effects in part by reducing fibrinogen, which promotes neuroprotection and improved recovery. The acute stage post-SCI is also characterized by hyperglycemia, which is strongly associated with poor functional outcomes at discharge. These findings support the importance of achieving tight glycemic control in acute human SCI to obtain better neurological outcomes. Emerging evidence suggests that a KD can also improve the patient's metabolic state and maintain normal glycemic levels. In contrast, standard hospital diets have traditionally promoted a relatively high carbohydrate nutritional content. Consistent with previous findings, we have recently shown that 5 weeks of KD decreased fasting serum glucose levels by 24 mg/dl whereas levels increased by 0.7 mg/dl in the SD group. These provocative findings have led us to our central hypothesis that SCI patients who consume a KD over the first 5 weeks (average hospital stay) after injury will have better neurological recovery, functional independence, and glycemic control than the SCI patients who consume an SD during this period.

Notice

Study information shown on this site is derived from ClinicalTrials.gov (a public registry operated by the National Institutes of Health). The listing of studies provided is not certain to be all studies for which you might be eligible. Furthermore, study eligibility requirements can be difficult to understand and may change over time, so it is wise to speak with your medical care provider and individual research study teams when making decisions related to participation.